این صفحه یک درگاره برگزیده است.

درگاه:ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری، جستجو

صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی

ریاضیات یا مزداهیک[نیازمند منبع] (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و دگرگونی تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم، دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

Plimpton 322.jpg

نظریه اعداد شاخه‌ای از ریاضیات محض است که در مورد خواص اعداد صحیح بحث می‌کند. در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روش‌های به‌کار رفته در سایر شاخه‌های ریاضی بررسی می‌کنند. مسائل بخش پذیری، الگوریتم اقلیدس برای محاسبه بزرگ‌ترین مقسوم‌علیه مشترک(ب. م. م)، تجزیه اعداد به اعداد اول، جستجوی عدد تام و همنهشتی‌ها در این رده هستند. برخی از یافته‌های مهم این رشته قضیه کوچک فرما، قضیه اعداد اول و قضیه اویلر، قضیه باقیمانده چینی و قانون تقابل درجه دوم هستند. خواص توابع ضربی مانند تابع موبیوس، تابع φ اویلر، دنباله اعداد صحیح، فاکتوریل‌ها و اعداد فیبوناچی در همین حوزه قرار دارند.

زندگی‌نامهٔ برگزیده

Persian Scholar pavilion in Viena UN (Omar Khayyam).jpg

خیام (زادهٔ ۲۸ اردیبهشت ۴۲۷، درگذشتهٔ ۵۱۰ خورشیدی) معروف به خیامی و خیام نیشابوری، از ریاضی‌دانان، ستاره‌شناسان و شاعران بنام ایران در دورهٔ سلجوقی است. گرچه پایگاه علمی خیام برتر از جایگاه ادبی او است و دارای لقب حجةالحق بوده‌است ولی آوازهٔ وی بیشتر به واسطهٔ نگارش رباعیاتش است که شهرت جهانی دارد. افزون بر آنکه رباعیات خیام را به اغلب زبان‌های زنده ترجمه نموده‌اند، فیتزجرالد رباعیات او را به زبان انگلیسی ترجمه کرده‌است که مایهٔ شهرت بیشتر وی در مغرب‌زمین گردیده‌است.شماری از تذکره‌نویسان، خیام را شاگرد ابن سینا و شماری نیز وی را شاگرد امام موفق نیشابوری خوانده‌اندهرچند صحت این فرضیه که خیام شاگرد ابن سینا بوده‌است، بسیار بعید می‌نماید، زیرا از لحاظ زمانی با هم تفاوت زیادی داشته‌اند. خیام در جایی ابن سینا را استاد خود می‌داند اما این استادی ابن سینا، جنبهٔ معنوی دارد.

مفاهیم

بر اساس قضیه فیثاغورس مجموع مساحت‌های دو مربع روی دو ضلع قائم(a و b)، برابر مربع روی وتر(c) است.

قضیهٔ فیثاغورس در هندسه و فضای اقلیدسی بخشی از صورت کلی قانون کسینوس‌ها هنگامی که زاویهٔ بین دو بردار ۹۰ درجه‌است می‌باشد. این قضیه به نام ریاضی‌دان یونانی فیثاغورس نامگذاری شده‌است. به سخن دیگر در یک مثلث راست‌گوشه (قائم الزاویه) همواره مجموع توان‌های دوم دو ضلع برابر با توان دوم ضلع سوم است. قانون کسیونس‌ها بیان می‌کند که اگر دو بردار (یا خط) a و b در راس O تشکیل یک زاویه با نام A بدهند.
بردار مجموع از رابطهٔ بدست می‌آید.

نوشتارهای برگزیده

نگارهٔ برگزیده

Pythagoras-2a.gif

اثبات قضیه فیثاغورث ()

گفتاورد

« ریاضی ملکه علوم است و نظریه اعداد ملکه ریاضی.»

کارل فریدریش گاوس

هندسه

Square - geometry.svg

مربع شکلی هندسی است با چهار لبهٔ (ضلع) برابر. در حقیقت مربع خمی بسته‌ است که ضلع‌های مجاورش دو به دو با هم زاویهٔ ۹۰ درجه می‌سازد و همه با هم برابر اند. برابر پارسی این خم بسته «چهار گوش» است.
برای مربعی با ضلع n داریم:

درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا